Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture.
نویسندگان
چکیده
Shoots can be regenerated from Arabidopsis (Arabidopsis thaliana) root explants in tissue culture through a two-step process requiring preincubation on an auxin-rich callus induction medium. Regenerating tissues can be directed along different developmental pathways leading to the formation of shoots, new roots, or callus by transferring to the appropriate organ induction medium. Using gene-profiling methods, we identified groups of genes that serve as molecular signatures of the different developmental processes, i.e. genes that were specifically up- or down-regulated on one developmental pathway, but not on others. One transcription factor gene that was up-regulated during early shoot development was RAP2.6L (At5g13330), a member of the ERF (ethylene response factor) subfamily B-4 of the ERF/APETALA2 transcription factor gene family. RAP2.6L functions in shoot regeneration because T-DNA knockdown mutations in the gene reduced the efficiency of shoot formation in tissue culture, but not normal embryo or seedling development. RAP2.6L promoter:beta-glucuronidase fusions demonstrated that the up-regulation of the gene during shoot regeneration was, at least in part, transcriptionally controlled. The promoter:beta-glucuronidase fusions also demonstrated that RAP2.6L expression was localized to the shoot and emerging leaves, but expression declined in the leaf lamina as leaves expanded. T-DNA knockdown mutations in RAP2.6L reduced the expression of many genes that are normally up-regulated during shoot development including CUP-SHAPED COTYLEDON2 that is involved in shoot meristem specification. Thus, RAP2.6L appears to be part of a network involved in regulating the expression of many other genes in shoot regeneration.
منابع مشابه
Establishment of embryonic shoot–root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis
Auxin and cytokinin signaling participates in regulating a large spectrum of developmental and physiological processes in plants. The shoots and roots of plants have specific and sometimes even contrary responses to these hormones. Recent studies have clearly shown that establishing the spatiotemporal distribution of auxin and cytokinin response signals is central for the control of shoot apica...
متن کاملPrimary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis
There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...
متن کاملProduction of sarsasapogenin from tissue culture of Asparagus racemosus and its quantification by HPTLC
To develop an alternative method for production of sarsasapogenin by plant tissue culture technique and its quantification in Asparagus racemosus and its in vitro cultures using HPTLC. Murashige and Skoog’s (MS) basal medium supplemented with various growth regulators was used for development of shoot and root calli while, hormone free MS medium was used for development of Agrobacterium tumefac...
متن کاملProduction of sarsasapogenin from tissue culture of Asparagus racemosus and its quantification by HPTLC
To develop an alternative method for production of sarsasapogenin by plant tissue culture technique and its quantification in Asparagus racemosus and its in vitro cultures using HPTLC. Murashige and Skoog’s (MS) basal medium supplemented with various growth regulators was used for development of shoot and root calli while, hormone free MS medium was used for development of Agrobacterium tumefac...
متن کاملA Fasciclin-Like Arabinogalactan-Protein (FLA) Mutant of Arabidopsis thaliana, fla1, Shows Defects in Shoot Regeneration
BACKGROUND The fasciclin-like arabinogalactan-proteins (FLAs) are an enigmatic class of 21 members within the larger family of arabinogalactan-proteins (AGPs) in Arabidopsis thaliana. Located at the cell surface, in the cell wall/plasma membrane, they are implicated in many developmental roles yet their function remains largely undefined. Fasciclin (FAS) domains are putative cell-adhesion domai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 141 2 شماره
صفحات -
تاریخ انتشار 2006